The Pohlig–Hellman Method Generalized for Group Structure Computation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Pohlig-Hellman Method Generalized for Group Structure Computation

We present a new algorithm that extends the techniques of the Pohlig-Hellman algorithm for discrete logarithm computation to the following situation: Given a nite abelian group and group elements h, g1; : : : ; g l , compute the least positive integer y and numbers x1 ; : : : ; x l such that h y = Q gi x i. This computational problem is important for computing the structure of a nite abelian gr...

متن کامل

An Computation-Efficient Generalized Group-Oriented Cryptosystem

A Group-Oriented Cryptosystem (GOC) allows a sender to encrypt a message sent to a group of users so only the specified sets of users in that group can cooperatively decrypt the message. Recently, Li et al. pointed out unauthorized sets in the receiving group can recover the encrypted messages in Yang et al.’s GOC; and they further repaired this security flaw. However, the improved GOC contains...

متن کامل

A new method for the generalized Hyers-Ulam-Rassias stability

We propose a new method, called the textit{the weighted space method}, for the study of the generalized Hyers-Ulam-Rassias stability. We use this method for a nonlinear functional equation, for Volterra and Fredholm integral operators.

متن کامل

Homotopy Perturbation Method for the Generalized Fisher’s Equation

More recently, Wazwaz [An analytic study of Fisher’s equation by using Adomian decomposition method, Appl. Math. Comput. 154 (2004) 609–620] employed the Adomian decomposition method (ADM) to obtain exact solutions to Fisher’s equation and to a nonlinear diffusion equation of the Fisher type. In this paper, He’s homotopy perturbation method is employed for the generalized Fisher’s equation to o...

متن کامل

A space efficient algorithm for group structure computation

We present a new algorithm for computing the structure of a finite abelian group, which has to store only a fixed, small number of group elements, independent of the group order. We estimate the computational complexity by counting the group operations such as multiplications and equality checks. Under some plausible assumptions, we prove that the expected run time is O( √ n) (with n denoting t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Computation

سال: 1999

ISSN: 0747-7171

DOI: 10.1006/jsco.1999.0279